Abstract
In this paper, we tackle the problem of computing a map that locally interpolates or approximates the values of a scalar function, which have been sampled on a surface or a volumetric domain. We propose a local approximation with radial basis functions, which conjugates different features such as locality, independence of any tessellation of the sample points, and approximation accuracy. The proposed approach handles maps defined on both 3D shapes and volumetric data and has extrapolation capabilities higher than linear precision methods and moving least-squares techniques with polynomial functions. It is also robust with respect to data discretization and computationally efficient through the solution of a small and well-conditioned linear system. With respect to previous work, it allows an easy control on the preservation of local details and smoothness through both interpolating and least-squares constraints. The main application we consider is the approximation of maps defined on grids, 3D shapes, and volumetric data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.