Abstract

Let $G=(V,E)$ be a graph of order $p$ and size $q$ having no isolated vertices. A bijection $f\colon E\hm{\rightarrow}\left\{1,2,3,\ldots,q \right\}$ is called a local antimagic labeling if for all $uv\in E$, we have $w(u)\neq w(v)$, the weight $w(u)=\sum_{e\in E(u)}f(e)$, where $E(u)$ is the set of edges incident to $u$. A graph $G$ is local antimagic, if $G$ has a local antimagic labeling. The local antimagic chromatic number $\chi_{la}(G)$ is defined to be the minimum number of colors taken over all colorings of $G$ induced by local antimagic labelings of $G$. In this paper, we completely determine the local antimagic chromatic number for the corona product of wheel and null graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.