Abstract

Local delivery of biomolecules from hydrogels is highly challenging because of their rapid diffusion and degradation. Gene therapy represents an alternative that allows for the prolonged production of proteins by transfected cells. In this study, we have developed nanocomposites consisting of DNA-polyethylenimine-silica nanoparticle complexes coencapsulated with fibroblasts within collagen hydrogels. Through the modulation of the particle size and polyethylenimine molecular weight, it was possible to achieve "in-gel" transfection permitting the sustained production of biomolecules from hydrogels over 1 week. Alternative configurations consisting of particle addition to cellularized gels and cell culture in the presence of complex-containing hydrogels were also investigated. These studies demonstrated that particle encapsulation limits DNA and silica dissemination outside the collagen hydrogels. They also show the key role of cell proliferation within collagen hydrogels on the transfection efficiency. Such nanocomposites therefore constitute promising materials for the development of novel gene delivery systems to promote tissue repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.