Abstract

Understanding spatial variation in species distribution and community structure is at the core of community ecology. Nevertheless, the effect of distance on metacommunity structure remains little studied. We examine how plant-pollinator community structure changes across geographical distances at a regional scale and disentangle its underlying local and regional processes. We use a multilayer network to represent linked plant-pollinator communities as a metacommunity in the Canary Islands. We used modularity (i.e. the extent to which the community is partitioned into groups of densely interacting species) to quantify distance decay in structure across space. In multilayer modularity, the same species can belong to different modules in different communities, and modules can span communities. This enabled quantifying how similarity in module composition varied with distance between islands. We developed three null models, each controlling for a separate component of the multilayer network, to disentangle the role of species turnover, interaction rewiring and local factors in driving distance decay in structure. We found a pattern of distance decay in structure, indicating that islands tended to share fewer modules with increasing distance. Species turnover (but not interaction rewiring) was the primary regional process triggering distance decay in structure. Local interaction structure also played an essential role in determining the structure similarity of communities at a regional scale. Therefore, local factors that determine species interactions occurring at a local scale drive distance decay in structure at a regional scale. Our work highlights the interplay between local and regional processes underlying community structure. The methodology, and specifically the null models, we developed provides a general framework for linking communities in space and testing different hypotheses regarding the factors generating spatial structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.