Abstract

Based on the partition of unity method (PUM), a local and parallel finite element method is designed and analyzed for solving the stationary incompressible magnetohydrodynamics (MHD). The key idea of the proposed algorithm is to first solve the nonlinear system on a coarse mesh, divide the globally fine grid correction into a series of locally linearized residual problems on some subdomains derived by a class of partition of unity, then compute the local subproblems in parallel, and obtain the globally continuous finite element solution by assembling all local solutions together by the partition of unity functions. The main feature of the new method is that the partition of unity provide a flexible and controllable framework for the domain decomposition. Finally, the efficiency of our theoretical analysis is tested by numerical experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call