Abstract
This paper reports on an experimental study carried out to better understand the wind pressure distribution on stand-alone panel surfaces and panels attached to flat building roofs. A complex model capable to incorporate solar panels at different locations and various inclinations was constructed at a 1:200 geometric scale. Three model panels equipped with pressure taps on both surfaces (36 in total) for point and area-averaged pressure measurements were used. Pressure and force coefficients were computed for every pressure tap and for all the panels. Different configurations were tested under similar conditions in order to examine the effect of various parameters on the experimental results. A minimal gap occurred between the solar panels and the roof of the model. The study found that the net values of pressure coefficients corresponding to different configurations are affected by the panel inclination for the critical 135° wind direction, for which panels on the back location undergo higher suctions in comparison to those in the front. The effect of building height on the solar collector total load is minimal, whereas corner panels are subjected to higher net loads for critical azimuths. Simplified net pressure coefficients for the design of solar panels are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wind Engineering and Industrial Aerodynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.