Abstract

Ionic conductivity data on nanocrystalline CaF 2 is evaluated. The d.c. conductivity is distinctly larger than in coarse-grained materials. The impedance plot exhibits two regimes: a high- and a low-frequency semicircle, the diameters of which increase with increasing grain size. The high-frequency semicircle reflects both bulk transport plus transport along the boundaries while the low-frequency semicircle describes the blocking effect of the grain boundaries. Absolute values and activation energy of the conductivity suggest dominating transport along space charge layers. The increase of the low frequency semicircle is due to increased current constriction because of the appearance of large pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.