Abstract
In generalized linear models (GLMs), measures of lack of fit are typically defined as the deviance between two nested models, and a deviance-based R2 is commonly used to evaluate the fit. In this paper, we extend deviance measures to mixtures of GLMs, whose parameters are estimated by maximum likelihood (ML) via the EM algorithm. Such measures are defined both locally, i.e., at cluster-level, and globally, i.e., with reference to the whole sample. At the cluster-level, we propose a normalized two-term decomposition of the local deviance into explained, and unexplained local deviances. At the sample-level, we introduce an additive normalized decomposition of the total deviance into three terms, where each evaluates a different aspect of the fitted model: (1) the cluster separation on the dependent variable, (2) the proportion of the total deviance explained by the fitted model, and (3) the proportion of the total deviance which remains unexplained. We use both local and global decompositions to define, respectively, local and overall deviance R2 measures for mixtures of GLMs, which we illustrate—for Gaussian, Poisson and binomial responses—by means of a simulation study. The proposed fit measures are then used to assess, and interpret clusters of COVID-19 spread in Italy in two time points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Classification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.