Abstract

Conjugated organic heterocycles are systems of growing interest in materials science in view of the potential applications in fields such as electronics, photonics, sensors, or corrosion protection. The study of their molecular properties serves as a model for the prediction of the behavior of potentially conductive oligomers and polymers. A detailed analysis of isomeric thiadiazole monoxide molecules has been done using Hartree–Fock and local (SVWN) and nonlocal (BLYP, B3LYP) density functionals and optimizing the molecular geometries by means of the gradient technique. A charge sensitivity analysis of the studied molecules has been performed by resorting to density functional theory, obtaining several sensitivity coefficients such as the molecular energy, net atomic charges, global and local hardness, global and local softness, and Fukui functions. With these results and the analysis of the dipole moments, the molecular electrostatic potentials and the total electron density maps, several conclusions have been inferred about the preferred sites of chemical reaction of the studied compounds. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 105–115, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.