Abstract
Recently, sparse coding has been widely adopted for data representation in real-world applications. In order to consider the geometric structure of data, we propose a novel method, local and global regularized sparse coding (LGSC), for data representation. LGSC not only models the global geometric structure by a global regression regularizer, but also takes into account the manifold structure using a local regression regularizer. Compared with traditional sparse coding methods, the proposed method can preserve both global and local geometric structures of the original high-dimensional data in a new representation space. Experimental results on benchmark datasets show that the proposed method can improve the performance of clustering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.