Abstract

► We propose a method to incorporate local search in GP-evolved intelligent structures. ► We combine neuro-fuzzy and fuzzy-evolutionary training for Takagi–Sugeno fuzzy systems. ► We apply the proposed system to regression, forecasting and control problems. This work presents a method to incorporate standard neuro-fuzzy learning for Takagi–Sugeno fuzzy systems that evolve under a grammar driven genetic programming (GP) framework. This is made possible by introducing heteroglossia in the functional GP nodes, enabling them to switch behavior according to the selected learning stage. A context-free grammar supports the expression of arbitrarily sized and composed fuzzy systems and guides the evolution. Recursive least squares and backpropagation gradient descent algorithms are used as local search methods. A second generation memetic approach combines the genetic programming with the local search procedures. Based on our experimental results, a discussion is included regarding the competitiveness of the proposed methodology and its properties. The contributions of the paper are: (i) introduction of an approach which enables the application of local search learning for intelligent systems evolved by genetic programming, (ii) presentation of a model for memetic learning of Takagi–Sugeno fuzzy systems, (iii) experimental results evaluating model variants and comparison with state-of-the-art models in benchmarking and real-world problems, (iv) application of the proposed model in control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call