Abstract

In this paper, local and global intrinsic dimensionality estimation methods are reviewed. The aim of this paper is to illustrate the capacity of these methods in generating a lower dimensional chemical space with minimum information error. We experimented with five estimation techniques, comprising both local and global estimation methods. Extensive experiments reveal that it is possible to represent chemical compound datasets in three dimensional space. Further, we verified this result by selecting representative molecules and projecting them to 3D space using principal component analysis. Our results demonstrate that the resultant 3D projection preserves spatial relationships among the molecules. The methodology has potential implications for chemoinformatics issues such as diversity, coverage, lead compound selection, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.