Abstract
This paper proposes a new feature extraction method for face recognition. The proposed method is based on Local Feature Analysis (LFA). LFA is known as a local method for face recognition since it constructs kernels which detect local structures of a face. It, however, addresses only image representation and has a problem for recognition. In the paper, we point out the problem of LFA and propose a new feature extraction method by modifying LFA. Our method consists of three steps. After extracting local structures using LFA, we construct a subset of kernels, which is efficient for recognition. Then we combine the local structures to represent them in a more compact form. This results in new bases which have compromised aspects between kernels of LFA and eigenfaces for face images. Through face recognition experiments, we verify the efficiency of our method.KeywordsFeature ExtractionFace RecognitionFace ImageReconstruction ErrorFeature Extraction MethodThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.