Abstract

We investigate node degrees in a network grown from a seed by hooking self-similar components under two models of randomness: a uniform attachment model and a model based on preferential attachment. We study two degree profiles: a local profile tracking the evolution of the degree of a particular node over time, and a global profile concerned about counts of the number of nodes of a particular degree.For the local profile, under uniform attachment growth, we have the exact mean, variance and probability distribution in terms of standard combinatorial numbers like generalized harmonic numbers and Stirling numbers of the first kind. Asymptotically, we observe phases: The early nodes have an asymptotically normal distribution, intermediate nodes have a Poisson distribution and the late nodes have a degenerate distribution. In contrast, under preferential attachment, the moments of the degree of a node contain Stirling numbers of the second kind and (under appropriate scaling) the profile has a gamma-type limit law.As for the global profile, we use Pólya urns to derive strong laws. Four regimes arise according to the structure of the seed. Within these regimes, we identify a few degenerate cases. Barring these degenerate cases, we uncover an asymptotically normal joint multivariate distribution for nodes of very small degrees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.