Abstract
Sentence Ordering refers to the task of rearranging a set of sentences into the appropriate coherent order. For this task, most previous approaches have explored global context-based end-to-end methods using Sequence Generation techniques. In this paper, we put forward a set of robust local and global context-based pairwise ordering strategies, leveraging which our prediction strategies outperform all previous works in this domain. Our proposed encoding method utilizes the paragraph’s rich global contextual information to predict the pairwise order using novel transformer architectures. Analysis of the two proposed decoding strategies helps better explain error propagation in pairwise models. This approach is the most accurate pure pairwise model and our encoding strategy also significantly improves the performance of other recent approaches that use pairwise models, including the previous state-of-the-art, demonstrating the research novelty and generalizability of this work. Additionally, we show how the pre-training task for ALBERT helps it to significantly outperform BERT, despite having considerably lesser parameters. The extensive experimental results, architectural analysis and ablation studies demonstrate the effectiveness and superiority of the proposed models compared to the previous state-of-the-art, besides providing a much better understanding of the functioning of pairwise models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.