Abstract

This study addresses the problem of arriving at transitive perfect colorings of a symmetrical pattern {\cal P} consisting of disjoint congruent symmetric motifs. The pattern {\cal P} has local symmetries that are not necessarily contained in its global symmetry group G. The usual approach in color symmetry theory is to arrive at perfect colorings of {\cal P} ignoring local symmetries and considering only elements of G. A framework is presented to systematically arrive at what Roth [Geom. Dedicata (1984), 17, 99-108] defined as a coordinated coloring of {\cal P}, a coloring that is perfect and transitive under G, satisfying the condition that the coloring of a given motif is also perfect and transitive under its symmetry group. Moreover, in the coloring of {\cal P}, the symmetry of {\cal P} that is both a global and local symmetry, effects the same permutation of the colors used to color {\cal P} and the corresponding motif, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call