Abstract

In this paper we study the Dirichlet problem $$\left\{\begin{array}{lll}-\Delta_p{u} = \sigma |u|^{p-2}u + \omega \quad {\rm in}\;\Omega,\\ u = 0 \qquad\quad\qquad\quad\;\qquad{\rm on}\;\partial\Omega,\end{array}\right.$$ , where σ and ω are nonnegative Borel measures, and $${\Delta_p{u} = \nabla \cdot (\nabla{u} \, |\nabla{u}|^{p-2})}$$ is the p-Laplacian. Here $${\Omega \subseteq \mathbf{R}^n}$$ is either a bounded domain, or the entire space. Our main estimates concern optimal pointwise bounds of solutions in terms of two local Wolff’s potentials, under minimal regularity assumed on σ and ω. In addition, analogous results for equations modeled by the k-Hessian in place of the p-Laplacian will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.