Abstract
In this paper we bridge local and global approximation theorems for positive linear operators via Ditzian–Totik moduliω2φ(f,δ) of second order whereby the step-weightsφare functions whose squares are concave. Both direct and converse theorems are derived. In particular we investigate the situation for exponential-type and Bernstein-type operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.