Abstract

The development of high-energy weapons could increase the velocity of projectiles to well over 1000 m/s. The nature of the injuries caused by the ballistic impact of projectiles at velocities much faster than 1000 m/s is unclear. This study characterizes the mechanical and biochemical alterations caused by high-speed ballistic impact generated by spherical steel ball to the hind limbs of the pig. That the local and distal injuries caused by hypervelocity ballistic impact to the living body are also identified. It is showed that the severity of the injury was positively correlated with the velocity of the projectile. And 4000 m/s seems to be the critical velocity for the 5.6 mm spherical steel ball, which would cause severe damage to either local or distal organs, as below that speed the projectile penetrated the body while above that speed it caused severe damage to the body. In addition, vaporization prevented the projectile from penetrating the body and the consequent pressure wave seems to be the causal factor for the distant damage.

Highlights

  • Penetrating trauma, high-energy injuries, are likely to increase in the future as military assault weapons are increasingly infiltrating the civilian sector via the illegal narcotics trade, and terrorist bombings are becoming more common-place (Petersen and Waterman 2011)

  • Twenty-five animals were randomly divided five groups of five pigs each for four projectile velocity groups (1000, 2000, 3000, and 4000 m/s), which were injured with live ammunition, whereas the fifth group served as the negative controls

  • When the velocity was within the range of 1000– 3000 m/s, the projectiles penetrated the hind limb, and the area of entrance and exit were highly positively correlated with the velocity

Read more

Summary

Introduction

Penetrating trauma, high-energy injuries, are likely to increase in the future as military assault weapons are increasingly infiltrating the civilian sector via the illegal narcotics trade, and terrorist bombings are becoming more common-place (Petersen and Waterman 2011). The mechanisms by which ballistic impact injure living tissue have been extensively studied (Fackler 1996). There are two mechanisms for local tissue damage after ballistic penetrating injury. One of the mechanisms is permanent cavitation, in which the affected tissue is crushed and destroyed. The second is temporary cavitation, which is caused by temporary cavity pressure generated while projectiles are penetrating the tissue. Temporary cavity pressure could aggravate the injury by oscillating the tissue with high-frequency pressure waves (Fackler 1996; Maiden 2009)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call