Abstract

Abstract The paper is devoted to so-called local and 2-local derivations on the noncommutative Arens algebra L ω(M,τ) associated with a von Neumann algebra M and a faithful normal semi-finite trace τ. We prove that every 2-local derivation on L ω(M,τ) is a spatial derivation, and if M is a finite von Neumann algebra, then each local derivation on L ω(M,τ) is also a spatial derivation and every 2-local derivation on M is in fact an inner derivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.