Abstract
Finding the dense regions of a graph and relations among them is a fundamental problem in network analysis. Core and truss decompositions reveal dense subgraphs with hierarchical relations. The incremental nature of algorithms for computing these decompositions and the need for global information at each step of the algorithm hinders scalable parallelization and approximations since the densest regions are not revealed until the end. In a previous work, Lu et al. proposed to iteratively compute the h -indices of neighbor vertex degrees to obtain the core numbers and prove that the convergence is obtained after a finite number of iterations. This work generalizes the iterative h -index computation for truss decomposition as well as nucleus decomposition which leverages higher-order structures to generalize core and truss decompositions. In addition, we prove convergence bounds on the number of iterations. We present a framework of local algorithms to obtain the core, truss, and nucleus decompositions. Our algorithms are local, parallel, offer high scalability, and enable approximations to explore time and quality trade-offs. Our shared-memory implementation verifies the efficiency, scalability, and effectiveness of our local algorithms on real-world networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.