Abstract

Cannabinoids can reduce nociceptive responses by acting on peripheral cannabinoid receptors in rodents. The study was conducted to evaluate the hypothesis that local administration of delta9-tetrahydrocannabinol (delta9-THC) can attenuate capsaicin-induced nociception in rhesus monkeys. Capsaicin (100 microg) was applied locally in the tail of rhesus monkeys to evoke a nociceptive response, thermal allodynia, in normally innocuous 46 degrees C water. delta9-THC (10-320 microg) was coadministered with capsaicin in the tail to assess local antinociceptive effects. In addition, a local antagonism study was performed to confirm the selectivity of delta9-THC action. delta9-THC dose-dependently inhibited capsaicin-induced allodynia. This local antinociception was antagonized by small doses (10-100 microg) of the cannabinoid CB1 antagonist, SR141716A, applied in the tail. However, 100 microg SR141716A injected subcutaneously in the back did not antagonize local delta9-THC. These results indicate that the site of action of locally applied delta9-THC is in the tail. It provides functional evidence that activation of peripheral cannabinoid CB1 receptors can attenuate capsaicin-induced thermal nociception in non-human primates and suggests a new approach for cannabinoids in pain management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.