Abstract
In slow–fast systems, fast variables change at a rate of the order of one, and slow variables, at a rate of the order of $$\varepsilon\ll 1$$ . The system obtained for $$\varepsilon=0$$ is said to be frozen. If the frozen (fast) system has one degree of freedom, then in the region where the level curves of the frozen Hamiltonian are closed there exists an adiabatic invariant. A. Neishtadt showed that near a separatrix of the frozen system the adiabatic invariant exhibits quasirandom jumps of order $$\varepsilon$$ . In this paper we partially extend Neishtadt’s result to the multidimensional case. We show that if the frozen system has a hyperbolic critical point possessing several transverse homoclinics, then for small $$\varepsilon$$ there exist trajectories shadowing homoclinic chains. The slow variables evolve in a quasirandom way, shadowing trajectories of systems with Hamiltonians similar to adiabatic invariants. This paper extends the work of V. Gelfreich and D. Turaev, who considered similar phenomena away from critical points of the frozen Hamiltonian.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.