Abstract

This study was conducted to visualize the lobular distribution of enhanced mRNA expression levels of heat shock proteins (HSPs) in liver samples from carbon tetra chloride (CCl4)-treated mice using in-situ hybridization (ISH). Male BALB/c mice given a single oral administration of CCl4 were euthanized 6 hours or 1 day after the administration (6 h or 1 day). Paraffin-embedded liver samples were obtained, ISH for HSPs was conducted, as well as hematoxylin-eosin staining and immunohistochemistry (IHC). At 6 h, centrilobular hepatocellular vacuolization was observed, and increased signals for Hspa1a, Hspa1b, and Grp78, which are HSPs, were noted in the centrilobular area using ISH. At 1 day, zonal hepatocellular necrosis was observed in the centrilobular area, but mRNA signal increases for HSPs were no longer observed there. Some discrepancies between ISH and IHC for HSPs were observed, and they might be partly caused by post-transcriptional gene regulation, including the ribosome quality control mechanisms. It is known that CCl4 damages centrilobular hepatocytes through metabolization by cytochrome P450, mainly located in the centrilobular region, and HSPs are induced under cellular stress. Therefore, our ISH results visualized increased mRNA expression levels of HSPs in the centrilobular hepatocytes of mice 6 hours after a single administration of CCl4 as a response to cellular stress, and it disappeared 1 day after the treatment when remarkable necrosis was observed there.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call