Abstract

An iterated deferred correction algorithm based on Lobatto Runge-Kutta formulae is developed for the efficient numerical solution of nonlinear stiff two-point boundary value problems. An analysis of the stability properties of general deferred correction schemes which are based on implicit Runge-Kutta methods is given and results which are analogous to those obtained for initial value problems are derived. A revised definition of symmetry is presented and this ensures that each deferred correction produces an optimal increase in order. Finally, some numerical results are given to demonstrate the superior performance of Lobatto formulae compared with mono-implicit formulae on stiff two-point boundary value problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.