Abstract
Osterberg-Cell (O-Cell) tests are widely used to predict the load–settlement behavior of large-diameter drilled shafts socketed in rock. The loading direction of O-Cell tests for shaft resistance is opposite to that of conventional downward load tests, meaning that the equivalent top load–settlement curve determined by the summation of the mobilized shaft resistance and end bearing at the same deflection neglects the pile-toe settlement caused by the load transmitted along the pile shaft. The emphasis is on quantifying the effect of coupled shaft resistance, which is closely related to the ratios of pile diameter to soil modulus ( D/ E s ) and total shaft resistance to total applied load ( R s / Q) in rock-socketed drilled shafts, using the coupled load-transfer method. The proposed analytical method, which takes into account the effect of coupled shaft resistance, was developed using a modified Mindlin’s point load solution. Through comparisons with field case studies, it was found that the proposed method reasonably estimated the load-transfer behavior of piles and coupling effects due to the transfer of shaft shear loading. These results represent a significant improvement in the prediction of load–settlement behaviors of drilled shafts subjected to bi-directional loading from the O-Cell test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.