Abstract

Bone-anchored attachment of amputation limb prostheses is increasingly becoming a clinically accepted alternative to conventional socket suspension. The direct transfer of loads demands that the percutaneous implant system and the residual bone withstand all forces and moments transferred from the prosthesis. This study presents load measurements recorded at the bone-anchored attachment in 20 individuals with unilateral transfemoral amputation performing the everyday ambulatory activities: level ground walking, stairs ascent/descent and slope ascent/descent. Mean peak values for the sample populations across activities ranged from 498-684 N for the resultant force, 26.5-39.8 Nm for the bending moment, and 3.1-5.5 Nm for the longitudinal moment. Significant differences with respect to level walking were found for the resultant force during stairs ascent, (higher, p = 0.002), and stairs descent, (lower, p = 0.005). Using a crutch reduced the peak resultant forces and the peak bending moments with averages ranging from 5.5-12.6 % and 13.2-15.6 %, respectively. Large inter-participant variations were observed and no single activity resulted in consistently higher loading of the bone-anchored attachment across the participants. Results from this study can guide future development of percutaneous osseointegrated implant systems for limb prostheses and their rehabilitation protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.