Abstract

This work aims at studying the loading rate dependency of mode I delamination growth in CFRPs, using typical fracture toughness analysis through both the R-curve and the crack tip opening rate. The average SERR is a method of data reduction based on energy balance which has been previously introduced to characterize delamination growth under different types of loading conditions in a similar manner. In the present research, the application of this method was extended to further analyze the results of delamination experiments at different loading rates. Mode I delamination tests on double cantilever beam specimens were performed at displacement rates varying from standard quasi-static testing up to 400 mm/s. A clear decrease in the propagation fracture toughness as well as in the average SERR was observed at high loading rates. The reduced fracture resistance at elevated rates was physically explained in correlation with fiber bridging, fiber breakage, and matrix cleavage observed in fracture surfaces via scanning electron microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call