Abstract

In automated production systems like flexible manufacturing systems (FMSs), an important issue is to find an adequate workload for each machine for each time period. Many integer linear programming (ILP) models have been proposed to solve the FMS loading problems, but not all of them take tools into account. Those that do not consider tooling are quite unrealistic, especially when setup times are important with respect to processing times. When tool loading has to be handled by the model, the load assignment may have to be changed completely. In this article we consider FMSs with a tool management of the following type: the system works in time periods whose durations are fixed or not; and tools are loaded on the machines at the beginning of each time period and stay there for the whole time period. Tool changes may occur only at the end of each time period when the system is stopped. We present some integer programming models for handling these situations with several types of objectives. Emphasis is laid on the ILP formulations. Computational complexities are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call