Abstract

The article presents the results of determining the loads on the carrying structure of a flat wagon transported military equipment. The authors suggest that stable fixation of military equipment can be provided with special rings mounted on the flat wagon structure. The results of the strength calculation confirmed the efficiency of this solution. The study deals with the mathematical modelling of the dynamic loads on the carrying structure of a flat wagon with a military tank. The research was made for the plane coordinates. The following oscillations were taken into account: longitudinal plane oscillations, jumping oscillations and galloping oscillations. The differential equations were solved by the Runge–Kutta method in MathCad software suite. The maximum accelerations on the carrying structure of a flat wagon in the longitudinal plane were about 34 m/s2, and in the vertical plane were about 5.0 m/s2. Thus, these accelerations values were within the admissible ones.The study also presents the results of the computer modelling of the dynamic loads on the flat wagon. The calculations were made in SolidWorks Simulation (CosmosWorks) software suite with the finite element method. The study presents the distribution fields of the accelerations relative to the carrying structure of a flat wagon and the numerical values of these accelerations.The models of the dynamic loads on the carrying structure of a flat wagon were verified with an F-test. It has been found that the hypothesis on adequacy is not rejected.The study also included determination of the natural frequencies of the carrying structure of a flat wagon. It was found that the values of the natural frequencies were within the permissible values.
 This research will contribute to better operation efficiency of the rolling stock with consideration of some military-strategic issues, and will be of help for anyone concerned with development and research into innovative rolling stock structures

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.