Abstract
Noble metal-based electrocatalysts are crucial for efficient acidic water oxidation to develop green hydrogen energy. However, traditional noble metal catalysts loaded on inactive substrates show limited intrinsic catalytic activity, and their large sizes have compromised the atom efficiency of these noble metals. Herein, IrOx nanoclusters with sizes below 2 nm, displaying high atom-utilization efficiency of Ir species, were supported on a redox-active MnO2 nanosubstrate (IrOx/MnO2) with different phases (α-MnO2, δ-MnO2, and ε-MnO2) to explore the optimal combination. Electrochemical measurements showed that IrOx/ε-MnO2 had excellent OER performance with a low overpotential of 225 mV at 10 mA cm-2 in 0.5 M H2SO4, superior to its counterpart, IrOx/α-MnO2 (242 mV) and IrOx/δ-MnO2 (286 mV). Moreover, it also delivered robust stability with no obvious change in operating potential at 10 mA cm-2 during 50 h of continuous operation. Combining the XPS results and Bader charge analysis, we demonstrated that the strong metal-support interactions of IrOx/ε-MnO2 could effectively regulate the electronic structures of the active Ir atoms and stabilize IrOx nanoclusters on supports to suppress their detachment, resulting in significantly enhanced catalytic activity and stability for acidic OER. DFT calculations further supported that the enhanced catalytic OER performance of IrOx/ε-MnO2 could be ascribed to the appropriate strength of interactions between the active Ir sites and the reaction intermediates of the potential-determining step (*O and *OOH) regulated by the redox-active substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.