Abstract

Considering the interest of the research community in the fatigue behavior of all-ceramic restorations and the time consumed in low-frequency cyclic fatigue tests, this study aimed to investigate the influence of the loading frequency on the zirconia fatigue strength. The biaxial flexural fatigue strength of Y-TZP discs was determined by the staircase approach after 500,000 cycles. The investigated frequencies were 2Hz (control-simulation of the chewing activity; n=20), 10Hz (n=20), 20Hz (n=20), and 40Hz (n=21). The fatigue strength data were analyzed using one-way ANOVA and post-hoc Tukey׳s test (α=0.05). Pearson coefficient (r) was calculated to assess the existence of a correlation between fatigue strength and loading frequency. X-ray diffraction analysis was used to determine the relative amount of monoclinic phase under each fatigue test condition. The fatigue strength was significantly higher for 40Hz group (630.7±62.1MPa) and did not differ among the groups 2Hz (550.3±89.7MPa), 10Hz (574.0±47MPa) and 20Hz (605.1±30.7MPa). Pearson correlation coefficient indicated a significantly moderate correlation (r=0.57) between fatigue strength and loading frequency. The percentage of monoclinic phase was similar among the groups. Therefore, the use of loading frequencies up to 20Hz seems a good alternative to expedite the cycling strength fatigue tests in polycrystalline ceramics without significantly changing the fatigue behavior showed by zirconia in tests employing the frequency of the masticatory cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.