Abstract

Externally imposed loading has substantially different effects on the swelling of nematic elastomers in the high-temperature isotropic and low-temperature nematic states. In the isotropic state, the stretching drives a considerably large degree of further swelling, whereas the stretching-induced volume change in the nematic state is significantly suppressed. In the isotropic phase that favors the less anisotropic state, the further swelling occurs to reduce the shape anisotropy caused by the imposed elongation. In the nematic phase, no significant swelling is induced because further swelling decreases the nematic order enhanced by the applied stretching. These different loading effects in the isotropic and nematic states observed in the experiments are qualitatively described by a mean field theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.