Abstract
The constantly growing world population leads to increasing demands for food, which challenges modern agriculture manifold. Pests, such as weeds, require the application of agrochemicals to increase crop yield. Due to the environmental impact of these potentially hazardous chemicals, the demand for more efficient formulations is increasing. Promising formulations consist of easily adaptable carriers from which controllable stimuli release the agrochemicals. Here, we investigated poly(N–vinylcaprolactam) (pVCL)-based microgels as a potential carrier for okanin, an inhibitor of the C4 plant key enzyme phosphoenolpyruvate carboxylase, by combining experiments, molecular simulations, and free energy computations. Dynamic light scattering, scanning transmission electron and atomic force microscopy revealed that pVCL microgels collapse and rigidify upon the loading of okanin. The simulations identified loosely adsorbed okanin and tightly bound okanin mediating inter-chain crosslinks. With increasing okanin concentration, stacking interactions of okanin occur with adsorbed and bound okanin. These findings can explain the experimentally observed collapse and the rigidification of the microgels. Based on the atomistic insights, two poly(N–vinylcaprolactam–co–glycidyl methacrylate) microgels were synthesized, for which a doubled loading capacity of okanin was found. Finally, we investigated the triggered release of okanin using the addition of green solvents as a stimulus both in vitro and in planta. This work establishes a basis for the further optimization of pVCL-based microgels as a carrier for the delivery of polyphenolic agrochemicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.