Abstract

Cereal plants take up iron from the soil via a phytosiderophore-mediated chelation system. Following root absorption, iron is transported through the xylem and phloem of the plant with the help of a variety of efflux and influx transporters belonging to the Zrt Irt-like protein (ZIP) and yellow stripe-like (YSL) protein families. Iron-regulated transporter1, a member of the ZIP family, mobilises ferrous [Fe(II)] ions, while several YSL family members such as YSL2, YSL15 and YSL18 can transport both ferric [Fe(II)] and ferrous [F`III)] ions into developing grains via chelation with mugineic acid or its derivatives. The iron is accumulated largely in the outer aleurone layer and embryo of the grains, which are removed during milling, leaving behind consumable endosperm that contains a very low amount of iron. This review highlights the uptake, transport and loading mechanisms for iron in cereal grains and provides an overview of strategies adopted for developing highly iron-enriched grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.