Abstract

3D printing, to print continuous fiber reinforced plastics (CFRPs) has advantages of manufacturing complex shape and short production cycle. Due to anisotropic mechanical properties of continuous fibers, the paving direction of the fibers determines the mechanical strengths of the printed CFRPs. In this paper, a novel load-dependent path planning (LPP) method has been proposed to generate printing path for CFRPs, which exactly follows the load transmission path of the parts and could provide higher mechanical properties. A topology optimization method is applied to simplify the original disordered load distribution. In the developed Stress Vector Tracing (SVT) algorithm, the printing paths are generated along the load transmission path with the variable spacing of adjacent paths. The LPP method has been compared with the state-of-the-art printing path planning method for continuous fibers and shown better load-bearing and printability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call