Abstract

We study routing algorithms on wireless networks that use only short paths, for minimizing latency, and achieve good load balance, for balancing the energy use. We consider the special case when all the nodes are located in a narrow strip with width at most /spl radic/3/2 /spl ap/ 0.86 times the communication radius. We present algorithms that achieve good performance in terms of both measures simultaneously. In particular, the routing path is at most four times the shortest path length and the maximum load on any node is at most three times that of the most load-balanced algorithm without path-length constraint. In addition, our routing algorithms make routing decisions by only local information and, as a consequence, are more adaptive to topology changes due to dynamic node insertions/deletions or due to mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.