Abstract

Construction of tunnels in urban cities may induce excessive settlement and tilting of nearby existing pile foundations. Various studies reported in the literature have investigated the tunnel–soil–pile interaction by means of field monitoring, centrifuge and numerical modelling. However, the load transfer mechanism between piles in a group, the induced settlement and the tilting of a pile group due to tunnel advancement has not been investigated systematically and is not well understood. This study conducts three-dimensional, coupled-consolidation finite element analyses to investigate tunnelling effects on an existing 2×2 pile group. The construction of a 6m diameter (D) tunnel in saturated stiff clay is simulated. Responses of the pile group located at a clear distance of 2.1m (0.35D) from a tunnel constructed at three different cover-to-diameter-of-tunnel ratios (C/D) of 1.5, 2.5 and 3.5 are investigated. The computed results are compared to published data based on field monitoring. It is found that the most critical stage for settlement, tilting and induced bending moment of pile group due to tunnelling is when the tunnel face is close to the pile group rather than at the end of tunnel excavation. The depth of the tunnel relative to the pile group has a vital influence on the settlement, tilting of pile group and the load transfer mechanism between piles in pile group induced by tunnel excavation. Tunnelling near the mid-depth of the pile group (i.e. C/D=1.5) induces the largest bending moment in the piles, but the settlement and tilting of the pile group are relatively small. Based on a settlement criterion, apparent loss of capacity of the pile group is 14% and 23% for tunnels constructed at depths of C/D=1.5 and at both C/D=2.5 and 3.5, respectively. The largest load redistribution between the front and rear piles in the group and the largest tilting of the pile cap towards the tunnel occurs when tunnel excavated at C/D=2.5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.