Abstract

Piles are often driven in multilayered soil profiles. The accurate prediction of the ultimate bearing capacity of piles driven in mixed soil is more challenging than that of piles driven in either clay or sand because the mechanical behavior of these soils is better known. In order to study the behavior of closed-ended pipe piles driven into multilayered soil profiles, fully instrumented static and dynamic axial load tests were performed on three piles. One of these piles was tested dynamically and statically. A second pile served as reaction pile in the static load test and was tested dynamically. A third pile was tested dynamically. The base of each pile was embedded slightly in a very dense nonplastic silt layer overlying a clay layer. In this paper, results of these pile load tests are presented, and the lessons learned from the interpretation of the test data are discussed. A comparison is made of the ultimate base and limit shaft resistances measured in the pile load tests with corresponding values predicted from in situ test-based and soil property-based design methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.