Abstract

We address several load shedding techniques over sliding window joins. We first construct a dual window architectural model including aux-windows and join-windows, and build statistics on aux-windows. With the statistics, we develop an effective load shedding strategy producing maximum subset join outputs. In order to accelerate the load shedding process, binary indexed trees have been utilized to reduce the cost on shedding evaluation. When streams have high arrival rates, we propose an approach incorporating front-shedding and rear-shedding, and find an optimal trade-off between them. As for the scenarios of variable speed ratio, we develop a plan reallocating CPU resources and dynamically resizing the windows. In addition, we prove that load shedding is not affected during the process of reallocation. Both synthetic and real data are used in our experiments, and the results show the promise of our strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.