Abstract
Fatigue crack growth behavior of tubular specimens with a through thickness circular hole made of a carbon steel subjected to axial and torsional loads was investigate. Loading sequence effect on crack growth rate was also studied by alternating between axial and torsion cycles in a loading block. Mode I crack growth was observed. Torsion fatigue crack growth lives were shorter and crack growth rates were higher than for axial loading. This is explained by a larger plastic zone size produced by a compressive tangential stress acting parallel to the crack growth path. In block loading with dominated torsion cycles crack grown rate was slower in comparison with pure torsion, while in block loading with dominated axial cycles a faster crack growth rate occurred in comparison with pure axial loading. Effects of the stress state on the plane of crack growth and of one pair of cracks on a second pair are considered to explain these observations. Crack growth rates were correlated with stress intensity factor range with or without considering the T-stress effect. Short crack growth behavior near the threshold region is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.