Abstract
We consider trapezoidal load-time pulses with linearly increasing and affinely decreasing durations equal to integer multiples of the time period of the first bending mode of vibration of a linearly elastic structure. For arbitrary spatial distributions of loads applied to monolithic and laminated orthotropic plates, it is shown through numerical solutions that plates’ vibrations become miniscule after the load is removed. This phenomenon is independent of the dwell time (i.e., the time duration between the rising and the falling portions) during which the load is kept constant. The primary reason for this response is that for such time-dependent loads, nearly all of plate’s strain energy is concentrated in deformations corresponding to the fundamental bending mode of vibration. Thus plate’s deformations can be studied by taking the mode shape of the 1st bending mode as the basis function and reducing the problem to that of solving a single second-order ordinary differential equation. We have verified this postulate by comparing strain energies computed from the 3-dimensional deformations of different plate geometries and boundary conditions with those determined by using the single degree of freedom (DoF) model. Thus for trapezoidal time-dependent loads applied on plates, the 1 DoF model provides reasonably accurate results and saves considerable computational effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.