Abstract
Accurately estimating state of charge (SoC) is very important to enable advanced management of lithium-ion batteries, however technical challenges mainly exist in the lack of a high-fidelity battery model whose parameters are sensitive to changes of the state and load condition. To address the problem, this paper explores and proposes a model switching estimation algorithm that online selects the most suitable model from its model library based on the relationship between load conditions for calibration and in practice. By leveraging a high-pass filter and the Coulomb counting, an event trigger procedure is developed to detect the estimation performance and then determine timely switching actions. This estimation algorithm is realized by adopting a gradient correction method for system identification and the unscented Kalman filter and H∞ observer for state estimation. Experimental results illustrate that the proposed algorithm is able to reproduce SoC trajectories under various operating profiles, with the root-mean-square errors bounded by 2.22%. The efficacy of this algorithm is further corroborated by comparing to single model-based estimators and two prevalent adaptive SoC estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.