Abstract

A nonlinear closed-loop load relief scheme is proposed to reduce the aerodynamic load during the ascent phase of a launch vehicle. The proposed controller is designed based on a back-stepping and sliding-mode control scheme with aerodynamic angle feedback. A hybrid load-relief strategy using the load relief scheme around the period of the maximum dynamic pressure and the traditional minimum-drift scheme during the other period is proposed. An aerodynamic angle estimator is also developed using a Kalman filter for the feedback of the load relief control. Numerical simulation is conducted to demonstrate the performance of the proposed strategy as well as the potential benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call