Abstract

The load redistribution between and within phases in eutectic high entropy alloy AlCoCrFeNi2.1 was measured using in-situ neutron diffraction during tensile deformation at 973 K. The load partitioning between phases is reversed compared to lower temperatures, with L12 becoming the stronger phase. The evolution of the orientation-specific stresses and strains in the L12 phase suggests that cube slip dominates the response. The low strength, internal load transfer and ideally plastic response of the B2 phase indicate a change in deformation mechanism compared to lower temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call