Abstract

Ultimate tensile strength of three continuous fiber-reinforced ceramic matrix composites, including SiC f/CAS-II (1D), SiC f/MAS-5 (2D) and SiC f/SiC (2D), was determined as a function of load (test) rate in air at 1100–1200 °C. All three composites exhibited a significant dependency of ultimate tensile strength on test rate. The application of the preload technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress) suggested that the overall phenomenological macroscopic failure mechanism of the composites would be a power-law type of slow crack growth or damage evolution/accumulation. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology for ceramic matrix composites, at least for a short range of lifetimes and when ultimate tensile strength is used as a failure criterion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.