Abstract
This paper investigates electric load optimization of nonlinear mono-stable Duffing energy harvesters subjected to white Gaussian excitations. Both symmetric and asymmetric nonlinear restoring forces are considered. Statistical linearization is utilized to obtain an approximate analytical expression for the optimal load as function of the other systems parameters. It is shown that the optimal load is dependent on the nonlinearity unless the ratio between the harvesting circuit time constant and the period of the mechanical oscillator is very large. Under optimal loading conditions, a harvester with a symmetric nonlinear restoring force can never produce more power than an equivalent linear harvester regardless of the magnitude or nature of the nonlinearity. On the other hand, asymmetries in the restoring force are shown to provide performance enhancement over an equivalent linear harvester.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.