Abstract
Due to the limited land area and mountainous topography, Japan is not necessarily suited for land-based wind power generation. But potential of offshore wind energy around the country is huge and has ability to supply whole electricity of the country. Development of offshore wind energy is also a promising solution for establishing sustainable society in the country. Water depth around the country generally becomes sharply deeper with distance from the shoreline and floating platform is necessary to deploy wind turbines. This paper investigates effect of motion of floating platform on the strength of turbine blade, a key issue in designing floating wind turbine, and design requirement for floating platform was discussed. Inertial load induced in the turbine blade by the motion of platform and rotation of turbine was formulated. The formulated load on the blade was verified by experiment with rotating rod on the oscillating tower. Two analysis codes, structural analysis code of turbine blade and motion analysis code of SPAR type floating platform, were developed. The effect of platform motion on the bending moment induced in the blade was investigated using the codes and design requirements for the platform were investigated from a viewpoint of maximum load and fatigue load. From a series of analysis on 5MW wind turbine showed that maximum load on blade is increased by 10% for pitching with amplitude of 5degrees but sectional modulus must be increased by 50% for fatigue. It is concluded that the increase of maximum load on the blade due to the motion of floating platform is not serious but fatigue load can be significant. Design requirement for the motion of floating platform will be that the amplitude of pitching motion should be less than a few degrees so that the land-based wind turbine can be installed on the floating platform with minimum modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.