Abstract

This paper proposes solutions to monitor the load and to balance the load of cloud data center. The proposed solutions work in two phases and graph theoretical concepts are applied in both phases. In the first phase, cloud data center is modeled as a network graph. This network graph is augmented with minimum dominating set concept of graph theory for monitoring its load. For constructing minimum dominating set, this paper proposes a new variant of minimum dominating set (V-MDS) algorithm and is compared with existing construction algorithms proposed by Rooji and Fomin. The V-MDS approach of querying cloud data center load information is compared with Central monitor approach. The second phase focuses on system and network-aware live virtual machine migration for load balancing cloud data center. For this, a new system and traffic-aware live VM migration for load balancing (ST-LVM-LB) algorithm is proposed and is compared with existing benchmarked algorithms dynamic management algorithm (DMA) and Sandpiper. To study the performance of the proposed algorithms, CloudSim3.0.3 simulator is used. The experimental results show that, V-MDS algorithm takes quadratic time complexity, whereas Rooji and Fomin algorithms take exponential time complexity. Then the V-MDS approach for querying Cloud Data Center load information is compared with the Central monitor approach and the experimental result shows that the proposed approach reduces the number of message updates by half than the Central monitor approach. The experimental results show on load balancing that the developed ST-LVM-LB algorithm triggers lesser Virtual Machine migrations, takes lesser time and migration cost to migrate with minimum network overhead. Thus the proposed algorithms improve the service delivery performance of cloud data center by incorporating graph theoretical solutions in monitoring and balancing the load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.