Abstract

This paper considers the significance of load voltage dynamics in studies of power system damping. A generic model of dynamic loads is used to investigate the influence of active and reactive power dynamics on the damping of oscillations in a multimachine power system. The interaction between the load and the power system is explored in terms of load and system transfer functions. It is shown that the power system transfer function is composed of a static part and a dynamic part. The static part is derived from the power flow Jacobian. The investigations indicate that load voltage dynamics can significantly influence the damping of modal oscillations. Static load models can give quite misleading predictions of damping when loads actually exhibit dynamic behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.